U.S. DEPARTMENT OF COMMERCE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION NATIONAL WEATHER SERVICE OFFICE OF SYSTEMS DEVELOPMENT TECHNIQUES DEVELOPMENT LABORATORY

TDL OFFICE NOTE 92-8

THE AUTOMATED GENERATION OF TEMPERATURE PHRASES FOR THE INTERACTIVE COMPUTER WORDED FORECAST

James M. Kosarik, Mark A. Przybocki, Michae1 W. Cammarata, James F. Wantz, Joseph Lang, and Matthew R. Peroutka

- July 1992

THE AUTOMATED GENERATION OF TEMPERATURE PHRASES FOR THE INTERACTIVE COMPUTER WORDED FORECAST

James M. Kosarik, Mark A. Przybocki, Michael W. Cammarata, James F. Wantz, Joseph Lang, and Matthew R. Peroutka

1. INTRODUCTION

The Techniques Development Laboratory (TDL) has been experimenting with the preparation of worded weather forecasts by computer for over 20 years (Glahn, 1970, 1979; Bermowitz, Heffernan, and Glahn, 1980; Bermowitz and Miller, 1984). Interpretation of direct numerical model output by statistical techniques provides a database of Model Output Statistics (MOS) forecasts for those weather elements normally contained in the public weather forecast. The database is analyzed by computer and text forecasts are automatically produced. Similar experiments have been conducted in Sweden (Lonnqvist, 1973) and Canada (Verret, 1990).

In support of the National Weather Service modernization, TDL has made extensive revisions and enhancements to an interactive version of the computer worded forecast known as the Interactive Computer Worded Forecast (ICWF). The aim of the ICWF is to provide forecasters with the mechanism for efficiently preparing the suite of forecast products normally issued by a National Weather Service Weather Forecast Office (WFO). With the ICWF, forecasters are able to interact with the database and modify forecast guidance as needed prior to submitting the database for product formatting.

For the current version of the ICWF, the forecast database has been redesigned to incorporate greater temporal and spatial resolution. In order to take advantage of this increased resolution, the text formatters have also been redesigned. This office note describes the new temperature phrase formatting routines for the public forecast products.

2. DESCRIPTION OF THE TEMPERATURE PHRASES

As many as two temperature phrases may be generated for each forecast period, a max/min phrase and an adjective phrase. A max/min phrase describes the maximum or minimum temperature forecast for the day or night (e.g., HIGH NEAR 90). If the maximum or minimum temperature does not occur during the forecast period (as might be the case with a $6-\mathrm{h}$ forecast period), then the max/min phrase provides a general description of the temperature (e.g., TEMPERATURES RISING THROUGH THE 70S). The adjective phrase describes the weather in conversational terms, with regard to the effect on the senses and with an indirect reference to climatology (e.g., VERY COLD, or UNSEASONABLY WARM).

After the text phrases have been generated, they are merged into the forecast. The max/min phrase is usually a stand alone sentence which follows the description of the weather (e.g., TODAY...PARTLY SUNNY AND WARM. HIGH NEAR 90). The adjective phrase is usually merged into the description of the weather (e.g., PARTLY SUNNY AND WARM, or WINDY...VERY WARM AND HUMID) but may be a stand alone sentence.

3. SELECTING THE TEMPERATURE PHRASES

Selection of the appropriate temperature phrases involves an examination of the forecast maximum or minimum temperature and the 3 -h temperature forecasts for the period. The selection process also includes a comparison of the forecast temperatures with the normal maximum or minimum and with the maximum or minimum observed during the previous day. The ICWF database contains forecasts of dry-bulb temperature and dewpoint temperature every 3 houṛ̂s from an initial time (either 0000 UTC or 1200 UTC) through 60 hours. Forecasts of the maximum (minimum) temperature for each 12 h daytime (nighttime) forecast period are also contained in the database as are the observed maximum and minimum temperatures from the previous day. In addition, the ICWF has local climatological files which contain the normal maximum and minimum temperature for each day of the year for the various locations within the WFO's area of responsibility.

The forecast database can be initialized from MOS guidance or from the forecast database prepared by the previous shift at the forecast office. Updates can be introduced at any time by the meteorologist on shift or by using statistical guidance generated from the Local AWIPS MOS Program (LAMP) (Glahn, 1980; Unger et al., 1989).

The selection of the max/min phrase is a separate process from selecting the adjective phrase. The max/min phrase selection usually results in a "traditional" high (e.g., HIGH NEAR 70) or low (e.g., LOW IN THE LOWER 50S) phrase. This phrase is used in most geographic areas virtually every day and night of the year. The other types of max/min phrases are selected when the maximum or minimum temperature occurs at a climatologically abnormal time.

Each forecast office must set thresholds to define a window for the time of occurrence of the normal minimum and maximum temperature. If, after examining the 3 -h temperature forecasts, it is determined that the maximum or minimum occurs outside of the window, then a max/min phrase is chosen which describes the abnormal diurnal temperature trace.

There are three max/min phrases that describe falling temperatures during the day, two phrases that describe rising temperatures at night, and one phrase which describes "NEARLY STEADY TEMPERATURES" through the period. The selection of the appropriate phrase is based on the degree of change in the abnormal diurnal temperature trace. An overnight rise in temperature of a few degrees may result in the selection of the phrase "TEMPERATURES STEADY OR SLOWLY RISING" whereas a dramatic rise in temperature would result in a phrase such as "EVENING LOW NEAR 20, THEN TEMPERATURES RISING TO THE UPPER 30S."

If the maximum or minimum does not occur during the forecast period (as might be the case with a 6 -h forecast period), then a general max/min phrase is selected. The general max/min phrase describes an averaged temperature trend during the period (e.g., TEMPERATURES RISING THROUGH THE 70S). See Fig. 1 for a flow diagram depicting the selection process of the max/min phrase. Appendix I is a complete listing of the thresholds used in the selection of the temperature phrases. Appendix II describes the specific criteria for the selection of each max/min phrase.

The selection of the adjective phrase results from a series of comparisons of the forecast maximum (minimum) to the departure from the normal maximum (minimum) and the change from yesterday's maximum (minimum). The detail level selected by the forecaster also contributes to the selection of the adjective phrase.

There are four detail levels for the adjective phrase. Detail level 1 contains the most descriptive information. Increasing detail levels produces a less descriptive phrase. For example, at detail level 1, the adjective phrase may be "UNSEASONABLY COLD;" at detail level 2 , the phrase may simply be "COLD;" at detail level 3, the adjective phrase may be omitted altogether. Detail level 3 frequently omits the adjective phrase, and detail level 4 always omits the phrase.

Once the temperature comparisons have been completed and the detail level has been taken into account, the adjective is selected from a file of phrases. The adjective phrase file and the temperature phrase file are site specific and can be adjusted by the forecast office to suit operational needs. This technique is similar to the one described by Glahn (1978). Appendix III lists the criteria for the selection of each adjective phrase.

4. CONSTRUCTING THE TEMPERATURE PHRASES

Once the appropriate phrase has been selected, construction of the phrase can begin. Phrase construction is accomplished by piecing together a series of phrase parts. For example, for the traditional max/min temperature phrase a high/low phrase part (HIGH or LOW) describes whether a high or low temperature is being forecast. A max/min phrase part is the actual forecast maximum or minimum. (The max/min phrase part will normally be written as one of four categories--for instance, "NEAR 50" (50F), "LOWER 50S" (51-53F), "MID 50S" (54-56F), "UPPER 50S" (57-59F), or a specific range "50-55.") Punctuation phrase parts are included where necessary.

To construct the phrase, the high/low phrase part would be merged with the max/min phrase part, and a period would be added to generate the complete max/min phrase (e.g., HIGH NEAR 50.).

The traditional max/min temperature phrase (e.g., HIGH NEAR 80.) is based upon the forecast maximum or minimum temperature in the ICWF database. If an abnormal diurnal temperature trace occurs, a destination temperature is determined from the $3-\mathrm{h}$ temperature forecasts in the ICWF database. In the phrase "EVENING LOW NEAR 20...THEN TEMPERATURES RISING TO NEAR $40, " 40$ is the destination temperature. The low of 20 is also taken from the 3 -h temperature forecasts.

If most of the abnormal fall or rise in temperature occurs early in the period, then a mean hourly temperature during the normal time of occurrence of the maximum or minimum will be calculated and used as the destination temperature. This averaged hourly temperature minimizes the destination temperature error at any given time during the climatological normal time of occurrence of the max/min. For example, if the daytime temperature data at 3-h projections were:

6 am	9 am	Noon	3 pm	6 pm
46	32	35	36	32

the destination temperature would be formatted as "MID 30S" since the temperature fell significantly early in the morning and then recovered slightly during the afternoon.

REFERENCES

Bermowitz, R. J., M. M. Heffernan, and H. R. Glahn, 1980: Computer wórded forecasts: An update. Preprints Eighth Conference on Weather Forecasting and Analysis, Denver, Amer. Meteor. Soc., 453-456.

Glahn, H. R., 1970: Computer-produced worded forecasts. Bull. Amer. Meteor. Soc., 51, 1126-1131.
__, 1979: Computer worded forecasts. Bull. Am. Meteor. Soc., 60, 4-11.
__ 1980: Plans for the development of a Local AFOS MOS Program (LAMP). Preprints Eighth Conference on Weather Forecasting and Analysis, Denver, Amer. Meteor. Soc., 320-305.
\qquad , 1978: Computer worded public weather forecasts. NOAA Technical Memorandum NWS TDL-67, National Oceanic and Atmospheric Administration, U.S. Department of Commerce, 24 pp.

Lonnqvist, 0., 1973: Weather forecasts in tabulated and worded form by computer interpretation of forecast charts. J. Appl. Meteor., 12, 292-301.

Unger, D. A., W. L. Wolf., T. L. Chambers, and M. W. Cammarata, 1989: The Local AFOS MOS Program: Current status and plans. Preprints Eleventh Conference on Probability and Statistics in Atmospheric Sciences, Monterey, Amer. Meteor. Soc., 114-119.

Verret, R., 1990: Automated plain language composition of weather forecast "RAPELS." CMC Technical Document, No. 34, 26 pp .

Figure 1. Data flow diagram--temperature phrase selection and construction.

APPENDIX I
 Control Constants (Thresholds) for Constructing the Temperature Phrases

Control constants are thresholds which guide the text phrase generating software routines during selection and construction of the phrases. The thresholds are integer values which are read in from a file during the. initialization of the ICWF. The threshold file is adjustable by the user so that each WFO may tailor the thresholds to best describe their local climatology.

The following thresholds make up the temperature control constants:
LT(1) - Maximum absolute difference between the forecast maximum temperature and the normal maximum temperature that is considered climatologically normal. Used in selecting adjective phrases. Default value $=7$.

LT(2) - Minimum absolute difference between the forecast maximum temperature and the normal maximum temperature that is considered climatologically unusual. Used in selecting the adjective phrases. Default value $=11$.

LT(3) - Wind chill will be considered if the wind chill temperature is LT(3) degrees lower than the maximum or minimum temperature. Used in selecting the adjective phrase "BITTER COLD" instead of "VERY COLD." Default value $=40$.

LT(4) through LT(9) are used to define the temperature categories of forecast maximum temperature used in the selection of daytime adjective phrases. See Appendix III.
$\operatorname{LT}(4)-$ Default value $=26$.
$\operatorname{LT}(5)-$ Default value $=41$.
$\operatorname{LT}(6)-$ Default value $=56$.
$\operatorname{LT}(7)-$ Default value $=80$.
$\operatorname{LT}(8)-$ Default value $=90$.
$\operatorname{LT}(9)-$ Default value $=96$.

LT(10). Used in the case of an abnormal daytime temperature trace with an early morning high. Minimum difference between the destination temperature and the morning maximum temperature to construct the phrase "TEMPERATURES FALLING TO (destination temp)." Default value $=6$.

LT(11)- Used in the case of an abnormal daytime temperature trace with an early morning high. Minimum difference between the destination temperature and the morning maximum temperature to construct the phrase "EARLY MORNING HIGH (max)...THEN TEMPERATURES FALLING TO (destination temp)." Default value - 11.

LT(12) through LT(17) are used to define the temperature categories of forecast minimum temperature used in the selection of nighttime adjective phrases. See Appendix III.

LT(12)- Default value $=1$.
$\operatorname{LT}(13)$ - Default value $=16$.
LT(14)- Default value $=31$.
LT(15) - Default value $=51$.
LT(16)- Default value $=61$.
LT(17)- Default value $=80$.
LT(18)- Used in the case of an abnormal nighttime temperature trace with an early evening low. Minimum difference between the evening minimum temperature and the destination temperature to construct the phrase "(time) LOW (min), THEN TEMPERATURES RISING TO (destination temp)." Default value $=8$.

LT(19)- Dewpoint temperature at which the phrase "humid" may be used. In addition, the dry bulb temperature must be above LT(15) at night and LT(7) during the day.
Default value $=65$.

LT(20) - Used in the case of an abnormal daytime temperature trace with an early morning high. Maximum difference between the destination temperature and the morning maximum temperature to construct the phrase "TEMPERATURES STEADY OR SLOWLY FALLING." Default value $=3$.

LT(21)- Used in the case of an abnormal nighttime temperature trace with an early evening low. Minimum difference between the destination temperature and the evening minimum temperature to construct the phrase "TEMPERATURES STEADY OR SLOWLY RISING." Default value $=3$.

LT(22) - Maximum difference between the minimum and maximum 3-h temperature forecast during the period to construct the phrase "TEMPERATURES NEARLY STEADY." Default value $=3$.

IT(23)- If the temperature phrase is " (time) HIGH (max)...THEN TEMPERATURES FALLING TO (destination temp)" is constructed and the destination temperature is below LT(23), then the adjective phrase will be "TURNING MUCH COLDER," otherwise the adjective phrase "TURNING COOLER" will be selected. Default value $=50$.

LT(24)- Maximum fall (rise) in the forecast 3 -h temperature at a projection in order to still select the phrase "TEMPERATURES STEADY OR SLOWLY RISING (FALLING)." For example, a "TEMPERATURES STEADY OR SLOWLY RISING" phrase would still be chosen if the temperature fell LT(24) degrees or less providing the $\operatorname{LT}(25)$ and $\operatorname{LT}(21)$ thresholds are still met.
Default value - 1 .

LT(25) - Maximum number of hours that the temperature forecast may fall (rise) during the forecast period in order to still construct the phrase "TEMPERATURES STEADY OR SLOWLY RISING (FALLING)." For example, if the temperature rose for $\operatorname{LT}(25)$ hours or less, the phrase "TEMPERATURES STEADY OR SLOWLY FALLING" would still be selected, providing $\operatorname{LT}(24)$ and $\operatorname{LT}(21)$ or $\operatorname{LT}(20)$ thresholds are still met. Default value $=3$.

LT(26) - Used in the case of an abnormal nighttime temperature trace with an early evening low. Minimum difference between the destination temperature and the evening minimum temp to construct the phrase "TEMPERATURES RISING TO (destination temp)." Default value $=6$.
$\operatorname{LT}(27)$ - Used in the case of an abnormal nighttime temperature trace with an early evening low. Minimum difference between the destination temperature and the evening minimum temperature to construct the phrase "(time) LOW (min), THEN TEMPERATURES RISING TO destination)." Default value $=11$.

LT(28) - Climatological earliest projection in a daytime period that a maximum temperature will occur. Assume four $3-\mathrm{h}$ projections per period (1200 UTC to 0000 UTC). Choose from projections 1 to 4. For example, assuming a forecast period of from 6 a.m. to 6 p.m., there are four projections at $3-\mathrm{h}$ intervals. Projection 1 corresponds to 9 a.m., projection 2 to 12 noon, projection 3 to 3 p.m., and projection 4 to $6 \mathrm{p} . \mathrm{m}$. If the climatological earliest time of occurrence for the maximum temperature is 12 noon, then projection 2 would be selected for LT(28). Default value $=2$.

LT(29) - Climatological latest projection in a daytime period that a maximum temperature will occur. Assume four 3-h projections per period (1200 UTC to 0000 UTC). Choose from projections 1 to 4. Default value $=4$.

LT(30)- Climatological earliest projection in a period that a minimum temperature will occur. Assume four 3-hour projections per period (0000 UTC to 1200 UTC). Choose from projections 1 to 4.
Default value $=3$.
LT(31)- Climatological latest projection in a period that a minimum temperature will occur. Assume four $3-\mathrm{h}$ projections per period (0000 UTC to 1200 UTC). Choose from projections 1 to 4 . Default value = 4 .

LT(32) - Maximum number of hours the forecast temperature may fall (rise) during a sub-period (period shorter than 12 hours) for using the phrase "STEADY OR SLOWLY FALLING/RISING." Default value = 1 .

```
LT(33) - Maximum number of degrees the forecast temperature may fall (rise)
        during a sub-period for using the phrase "STEADY OR SLOWLY
        FALLING/RISING."
    Default value - 1 .
LT(34)- Minimum length in hours of a forecast sub-period before attempting
        to identify temperature trends. If a trend cannot be determined or
        the number of hours is less than LT(34), then a sub-period phrase
        "TEMPERATURES MAINLY IN THE XXS" will be generated.
        Default value \(=3\).
    LT(35) - Minimum number of degrees that the temperature must fall or rise
        during a forecast sub-period to include the word "QUICKLY" to
        describe the fall or rise.
        Default value \(=30\).
LT(36) - If the forecast maximum or minimum temperature is less than or equal
        to \(\operatorname{LT}(36)\) degrees from a temperature divisible by 10 (e.g., 40, 50,
        etc.), then the temperature phrase for a forecast sub-period will
        read "TEMPERATURE AROUND XO."
        Default value \(=2\).
```

APPENDIX II
Criteria for Max/Min Phrase Selection

A max/min phrase describes the maximum or minimum temperature forecast for the forecast period. A max/min phrase is selected and constructed for each forecast period. There are eight unique max/min phrases.

For phrases 1-6 below, the maximum or minimum temperature occurs at a climatologically abnormal time (e.g., temperatures fall during the day). Projections LT(28) and LT(29) define the normal time of occurrence of the maximum temperature. Projections LT(30) and LT(31) define the normal time of occurrence of the minimum temperature. After examining the criteria listed below, one of the six max/min phrases will be selected to describe the abnormal diurnal temperature trace.

For phrase 7, the forecast period does not include the climatological normal time of occurrence of the maximum or minimum temperature (e.g., a forecast for only the morning period). A general phrase will be constructed that reflects the temperature trace during the period (e.g., TEMPERATURES RISING THROUGH THE 70S).

Phrase 8 describes a normal temperature trace which yields a traditional high or low phrase (e.g., LOW IN THE LOWER 40S). This is the phrase used most often with typical daytime and nighttime forecast periods.

The selection of the max/min phrase is based in part on the temperature data meeting specific thresholds. These thresholds consist of time requirements and temperature boundaries. These temperature phrase thresholds are described in Appendix I.

Listed below are criteria for selecting the max/min temperature phrases:
Phrase 1. (time) HIGH (max), THEN TEMPERATURES FALLING TO (destination temp).

1) The forecast period must be a daytime forecast period and must contain at least some part of the normal time of maximum temperature and 6 or more hours prior to that time.
2) The maximum temperature must occur at least 3 hours before projection LT(28).
3) The maximum temperature minus the destination temperature must be greater than a threshold temperature, LT(11) degrees. If the temperature recovers later in the period, the average $3-\mathrm{h}$ temperature during the normal time of occurrence of the maximum must still meet this threshold.

Phrase 2. TEMPERATURES FALLING TO (destination temp).

1) The forecast period must be a daytime forecast period and must contain at least some part of the normal time of maximum temperature and 6 or more hours prior to that time.
2) The maximum temperature must occur at least 3 hours before projection LT(28).
3) The maximum temperature minus the destination temperature must be greater than a threshold temperature, LT(10) degrees. If the temperature recovers later in the period, the average $3-\mathrm{h}$ temperature during the normal time of occurrence of the max must still meet the control constant threshold.

Phrase 3. TEMPERATURES STEADY OR SLOWLY FALLING

1) The forecast period must be a daytime forecast period and must contain at least some part of the normal time of maximum temperatures and 6 or more hours prior to that time.
2) The maximum temperature must occur at least 3 hours before projection LT(28).
3) The maximum temperature minus the temperature at the end of the period must be greater than LT(20) degrees and must not increase during the period more than $\operatorname{LT}(24)$ degrees for $\operatorname{LT}(25)$ total hours.

Phrase 4. (time) LOW (min), THEN TEMPERATURES RISING TO (destination temp).

1) The forecast period must be a nighttime forecast period and must contain at least some part of the normal time of minimum temperatures and 6 or more hours prior to that time.
2) The minimum temperature must occur at least 3 hours before projection LT(30).
3) The destination temperature minus the minimum temperature must be greater than a threshold temperature, $\operatorname{LT}(26)$ degrees. If the temperature falls later in the period, the average 3 hour temperature during the normal time of occurrence of the minimum must still meet this threshold.

Phrase 5. TEMPERATURES STEADY OR SLOWLY RISING.

1) The forecast period must be a nighttime forecast period and must contain at least some part of the normal time of minimum temperatures and 6 or more hours prior to that time.
2) The minimum temperature must occur at least 3 hours before projection $\operatorname{LT}(30)$.
3) The minimum temperature minus the temperature at the end of the period must be greater than $\operatorname{LT}(21)$ degrees and must not fall during the period more than LT(24) degrees for LT(25) total hours.

Phrase 6. TEMPERATURES NEARLY STEADY.

1) The difference between the maximum and minimum 3-h temperatures during the period must be less then LT(22) degrees.

: Phrase 7. TEMPERATURES (RISING/FALLING THROUGH/INTO) (MAINLY IN) THE

 (destination temp).1) No other climatological abnormal diurnal temperature trace occurs.
2) The forecast period must end before the end of the normal time of occurrence of the maximum or minimum temperatures (generally used for period lengths of less than 12 hours, e.g., a forecast for the morning or evening).

Phrase 8. HIGH/LOW (min/max).

1) Standard max/min temperature phrase selected if no abnormal diurnal temperature trace occurs.

Selection of Temperature Adjective Phrases

There are two temperature adjective phrase files, one for a daytime forecast period and one for a nighttime forecast period. The appropriate file is accessed and the adjective phrase is selected and retrieved after the calculation of a key number.

The key number is a four digit integer. Each of the four digits represents one of four temperature comparisons. The comparisons and calculations of the key number for the daytime and nighttime files are explained below.

The thresholds that control the calculation of the key number and the selection of the adjective phrase are contained in the temperature phrase threshold file (see Appendix I).

The maximum or daytime adjective phrase file:

Digit

1 The first digit of the four digit identifying key number (variable K) corresponds to the maximum temperature category that the forecast daytime high falls into. The maximum temperature thresholds are specified by the forecast office in the temperature threshold file. There are seven categories; therefore, K may take on the values $K=1$ to 7 .
$\mathrm{K}=1: \quad$ Forecast Maximum Temperature $\geq \operatorname{LT}(9)$
$\mathrm{K}=2: \operatorname{LT}(9)>$ Forecast Maximum Temperature $\geq \operatorname{LT}(8)$
$\mathrm{K}=3: \operatorname{LT}(8)>$ Forecast Maximum Temperature $\geq \operatorname{LT}(7)$
$\mathrm{K}=4: \quad \operatorname{LT}(7)>$ Forecast Maximum Temperature $\geq \operatorname{LT}(6)$
$\mathrm{K}=5: \operatorname{LT}(6)>$ Forecast Maximum Temperature $\geq \operatorname{LT}(5)$
$K=6: \operatorname{LT}(5)>$ Forecast Maximum Temperature $\geq \operatorname{LT}(4)$
$\mathrm{K}=7:$ Forecast Maximum Temperature $<\operatorname{LT}(4)$
2 The second digit of the four digit identifying key number (variable L) corresponds to the departure from the normal maximum temperature. There are two thresholds that must be specified by the forecast office in the temperature threshold file. There are five categories since the departure from normal may be positive or negative, therefore L may take on the values $L=1$ to 5 .
$\mathrm{L}=1: \quad$ Departure from normal $\leq-\operatorname{LT}(2)$
$\mathrm{L}=2: \quad-\mathrm{LT}(2)<$ Departure from normal < - LT (1)
$L=3: \quad-\operatorname{LT}(1) \leq$ Departure from normal $\leq \operatorname{LT}(1)$
$\mathrm{L}=4: \quad \mathrm{LT}(2) \geq$ Departure from normal $>\mathrm{LT}(1)$
$\mathrm{L}=5:$ Departure from normal $>\operatorname{LT}(2)$

3 The third digit of the four digit identifying key number (variable M) corresponds to the change in the maximum temperature from yesterday. Two thresholds must be specified by the Forecast Office yielding five categories (including negative and positive changes), $M=1$ to 5. The category $M=6$ is used when yesterday's maximum is missing.

```
M=1: Change > LT(11)
M=2: LT(11) \geq Change > LT(10)
M=3: -LT(10) \leq Change \leq LT(10)
M=4: -LT(11) \leq Change < - LT(10)
M=5: Change < -LT(11)
M=6: Yesterdays maximum temperature is missing.
```

4 The fourth digit of the four digit identifying key number (variable IT) represents the detail level corresponding to the specified phrase. Presently, detail levels are limited to $I T=1$ to 4 .

```
IT = 1: For detail level 1.
IT = 2: For detail level 2.
IT = 3: For detail level 3.
IT = 4: For detail level 4. Detail level four omits all temperature
adjectives.
```

Selection of the adjective phrase used to describe the temperature at night is the same as the selection process for the daytime temperature adjective except that a different adjective phrase file is accessed and different thresholds are used.

The minimum or nighttime adjective phrase file:

Digit

1 The first digit of the four digit identifying key number (variable K) corresponds to the minimum temperature category that the forecast nighttime low falls into. The minimum temperature thresholds are specified by the forecast office in the temperature threshold file. There are seven categories, therefore K may take on the values $K=1$ to 7 .
$\mathrm{K}=1: \quad$ Forecast Minimum Temperature \geq LT(17)
$\mathrm{K}=2: \operatorname{LT}(17)>$ Forecast Minimum Temperature $\geq \operatorname{LT}(16)$
$\mathrm{K}=3: \operatorname{LT}(16)>$ Forecast Minimum Temperature $\geq \operatorname{LT}(15)$
$\mathrm{K}=4: \operatorname{LT}(15)>$ Forecast Minimum Temperature $\geq \operatorname{LT}(14)$
$K=5: \quad \operatorname{LT}(14)>$ Forecast Minimum Temperature $\geq \operatorname{LT}(13)$
$K=6: \operatorname{LT}(13)>$ Forecast Minimum Temperature $\geq \operatorname{LT}(12)$
$\mathrm{K}=7$: Forecast Minimum Temperature < LT(12)
2 The second digit of the four digit identifying key number (variable L) corresponds to the departure from the normal minimum. There is one threshold that must be specified in the temperature threshold file by the forecast office. There are 3 categories since the departure can be negative or positive.
$L=1$: departure from normal < - LT(18)
$L=2: \quad-\operatorname{LT}(18) \leq$ departure from normal $\leq \operatorname{LT}(18)$
$L=3:$ departure from normal $>\operatorname{LT}(18)$
3 The third digit of the four digit identifying key number (variable M) corresponds to the change in the minimum temperature from yesterday. There is one threshold that must be specified in the temperature threshold file by the forecast office. There are 3 categories
($M=1$ to 3) since each departure can be negative or positive, and a fourth category $(M=4)$ when yesterday's minimum is missing.
$M=1: \quad$ change $<-\operatorname{LT}(27)$
$M=2: \quad-\operatorname{LT}(27) \leq$ change $\leq \operatorname{LT}(27)$
$M=3:$ change $>\operatorname{LT}(27)$
$M=4:$ Value of yesterday's min temp $=$ missing parameter
4 The fourth digit of the four digit identifying key number (variable IT) represents the detail level corresponding to the specified phrase. Presently, detail levels are limited to $I T=1$ to 4.
$I T=1:$ For detail level 1.
$I T=2:$ For detail level 2.
$I T=3:$ For detail level 3.
$I T=4:$ For detail level 4. Detail level four omits all temperature adjectives.

After the key number has been identified, the phrase is selected. When the phrase is selected, a phrase type number is returned. This number provides grammatical information about the phrase and determines whether the phrase will be emphasized over other phrases when merged into the body of the forecast.

PHRASE TYPE
0 - No adjective phrase is selected.
1 - An adjective phrase (no emphasis) which is used as an adjective grammatically (e.g., WARM).
2 - An adjective phrase (no emphasis) that is used as a noun grammatically (e.g., SEASONABLE TEMPERATURES).

3 - An adjective phrase describing a non-standard temperature trace (emphasized).
4 - An adjective phrase that is emphasized and is used as an adjective grammatically (e.g., VERY HOT).
5 - An adjective phrase that is emphasized and is used as a noun grammatically (e.g., RECORD COLD).

Figs. 2 through 5 contain the default adjective phrases with the corresponding key numbers and phrase type numbers. Shown below is a guide to interpreting the tables. Detailed information regarding the key number and phrase types is presented on the preceding pages of this Appendix.

TEMPERATURE ADJECTIVE TABLE CELL

sample

$\begin{gathered} \text { KEY NUMBER } \\ 2234 \end{gathered}$	$\begin{gathered} \text { PHRASE TYPE } \\ 3 \end{gathered}$	PHRASE
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-

KEY NUMBER - Four digit identifying number for each phrase. Composed as follows:

1st digit - Maximum/minimum temperature category. 2nd digit - Departure from normal category.
3rd digit - Change in maximum/minimum temperature from yesterday. 4 th digit - Detail level.

For some categories of maximum/minimum temperature, departure from normal, and change from yesterday, phrases are not generated and the corresponding key numbers will not appear in the figure.

PHRASE TYPE - An integer used to provide information regarding grammar and emphasis.

PHRASE - A phrase which describes the forecast temperature.

Figure 2. Minimum temperature descriptors for detail levels 1 and 2, as a function of forecast temperature, departure from normal, and change from the day before. No phrases are generated under detail levels 3 and 4. Ranges corresponding to default values of the LT() parameters are indicated for each box in the table. All temperatures are in degrees F. Note that for departures of $8^{\circ} \mathrm{F}$ or less (2nd digit of 4 digit key number equals 2), adjective phrases are not generated.

$\text { > } 96$ LT(9) 91-96	\because		13121 HOT 13221 HOT 13421 NOT AS HOT 13521 NOT AS HOT	14124 VERY HOT 14224 VERY HOT 14324 CONTINUED VERY hOT 14421 NOT AS HOT 14521 NOT AS HOT 14621 HOT	15124 very hot 15224 VERY HOT 15324 CONTINUED VERY HOT 15421 HOT 15521 HOT 15621 нот
	.	22521 COOLER	23521 NOT AS HOT	24121 HOT 24221 2432 1 2450 CONTINUED HOT 2452 1 NOT AS HOT 2462 1	25124 VERY HOT 25224 VERY HOT 25324 CONTINUED. VERY HOT 25421 HOT 25521 NOT AS HOT 2562 1 Нот
LT(8) 81-90 LT(7) 57-80	3142 1 COOLER 3152 4 MUCH COOLER 3162 1 COOL	$\begin{array}{ll}3212 & 1 \text { HARMER } \\ 3252 & 1 \text { COOLER }\end{array}$	33121 HARMER 33521 COOLER	34121 WARMER 34521 SOMEMHAT COOLER	3512 \& MUCH HARMER 35221 WARMER 35321 CONTINUED WARM 35424 HOT AS WARM 35521 HOT AS HOT 35621 HARK
	41121 WARMER 41221 COOL 41321 CONTIAUED COOL 41421 COOLER 4152 \& MUCH COOLER 41621 COOL	42121 WARMER 42521 COOLER	43121 HARMER 43521 COOLER	44121 WARMER 44521 CCOLER	45121 MUCH HARMER 45221 WARMER 45321 CONTINUED MARM 45421 NOT AS HARM 45521 NOT AS MARM 45621 MILD
$\begin{aligned} & \operatorname{LT}(6) \\ & 42-56 \end{aligned}$	```51121 NOT AS COLD 51221 COLD 51321 CONTINUED COLD 51421 COOLER 51521 COOLER 51621 COLD```	52121 NOT AS COLD 52521 COLDER	53121 HARMER 53521 COOLER	54121 YARMER 54521 NOT AS WARM	55221 HARMER 55321 MILD
$\begin{aligned} & L T(5) \\ & 27-41 \end{aligned}$	61121 NOT AS COLD 61221 COLD 61321 CONTINUED COLD 61421 COLDER 61521 MUCH COLDER 61621 COLD	```62121 NOT AS COLD 62321 CONTINUED COLD 62421 COLDER 62521 COLDER 62621 COLD```	63124 NOT AS COLD 63524 COLDER	64121 WARMER	
$\begin{gathered} \operatorname{LT}(4) \\ \leq 26 \end{gathered}$	71121 NOT AS COLD 71224 VERY COLD 7132 4 CONTINUED VERY COLD 7142 4 BITTER COLD 71524 BITTER COLD 71624 BITTER COLD	72121 NOT AS COLD 72221 COLD 72321 CONTINUED COLD 72421 COLDER 72524 MUCH COLDER 72624 VERY COLD	73121 NOT AS COLD 73221 SEASONABLY COLD 73421 COLDER 73524 MUCH COLDER		
	<-11	(1) - 11 T0 -8	(2) $\quad .7$ T0 7	(1) 8 T0 11	LT(2) > 11

DEPARTURE FROM NORMAL
 departure the LT()

LS甘つGษod axalvagdial

>96	11111 WARMER 11211 HARMER 11411 Not AS Hot 11511 NOT AS HOT	```1211 1 WARMER 1221 1 WARMER 12411 NOT AS HOT 1251 1 NOT AS HOT```	13111 HOT 13211 HOT 13411 NOT AS HOT 13511 NOT AS HOT	14114 VERY HOT 14214 VERY HOT 14314 CONTINUED VERY hot 14411 NOT AS HOT 14511 NOT AS HOT 14611 Нот	15114 VERY HOT 15214 VERY HOT 15314 continued very hot 15411 нот 15511 HOT 15611 Нот
$91-96$	21111 WARMER 21211 HARMER 21411 NOT AS HOT 21511 NOT AS HOT	22111 WARMER 22211 WARMER 22411 COOLER 22511 COOLER	23111 WARMER 23511 NOT AS HOT	```2411 1 HOT 2421 1 нот 2431 1 continued hot 2441 1 нот 2451 1 NOT AS HOT 24611 Нот```	2511 द VERY HOT 25214 VERY HOT 25314 CONtinued very hot 25411 HOT 25511 NOT AS HOT 25611 нот
81-90	31111 NOT AS COOL 31211 NOT AS COOL 31411 COOLER 31514 MUCH COOLER 31611 COOL	32111 WARMER 32211 WARM 32311 HARM 32411 COOLER 32511 COOLER	33111 HARMER 33511 COOLER	34111 HARMER 34211 WARMER 34311 CONTINUED HARM 34511 SOMEWHAT COOLER 34614 VERY WARM	35114 MUCH HARMER 35114 MUCH HARMER 35114 MUCH KARMER 35211 HaRMER 3521 I MARMER
$\begin{aligned} & 15(7) \\ & 57-80 \end{aligned}$	41111 HARMER 41211 COOL 41311 CONTINUED COOL 41411 COOLER 41514 MUCH COOLER 41611 COOL	42111 HARMER 42211 coOL 42311 COOL 42411 COOLER 42511 COOLER 42611 COOL	4311 1 HARMER 4321 1 MILD 4341 1 COOLER 4351 1 COOLER	4411 1 4421 1 MARMER 4431 1 MILD 4441 1 4451 1 4 COOLE	45111 MUCH WARMER 45111 MUCH WARMER 45111 MUCH HARMER 45211 HARMER 45211 HARMER 45311 CONTINUED WARM
$42-56$	51111 nat as cold 51211 COLD 51311 CONtinued cold 51411 COLDER 51511 colder 51611 COLD	```52111 NOT AS COLD 52211 cool 52311 CONTINUED COLD 52411 COLDER 52511 COLDER 52611 COOL```	5311 1 HARMER 5321 1 MILD 5331 1 cOOL 5341 1 COOLER 5351 1 5361 COOLER 53 COOL	54111 WARMER 5421 5431 1 544 WARMER 541 5451 54	55114 MUCH WARMER 55114 MUCH HARMER 5511 द MUCH WARMER 55211 WARMER 55211 WARMER 55311 MILD
$27-41$	61111 NOT AS COLD 61211 COLD 61311 CONTINUED COLD 61411 COLDER 61514 MUCH COLDER 61611 COLD	```62111 NOT AS COLD 62211 COLD 62311 CONTINUED COLD 62411 COLDER 62511 COLDER 62611 COLD```	63114 NOT AS COLD 63211 COOL 63411 COOL 63514 COLDER	64111 WARMER 64211 HARMER 64311 MILD 64411 NOT AS HARM 64511 NOT AS WARM 64611 MILD	65111 HARMER 65211 HARMER 65312 COntinued mild 65411 MILD 65511 NOT AS WARM 65611 MILD
≤ 26	71111 NOT AS COLD 71214 VERY COLD 71314 CONTINUED VERY COLD 71414 BITTER COLD 71514 BITTER COLD 71614 BITTER COLD	```7211 1 NOT AS COLD 7221 1 COLD 7231 1 CONTINUED COLD 7241 1 COLDER 7 2 5 1 4 \text { MUCH COLDER} 72614 VERY COLD```	73111 NOT AS COLD 73214 SEASONABLY COLD 73311 SEASONABLY COLD 73411 COLDER 73514 MUCH COLDER	```7411 1 HARMER 7421 2 MODERATING TEMPERATURES 7441 1 COLDER 7451 1 COLDER```	75111 NARMER 75211 MILD 75311 MILD 75411 NOT AS HARM 75511 NOT AS WARM 75611 MILD
	<-11	-11 то -8	-7 7 \% 7	8 то 11	

[^0]| >96 | ! | | 13131 нот | 14134 VERY HOT 14234 VERY HOT | 15134 VERY HOT
 15234 VERY HOT
 15334 CONIINUED VERY HOT
 15631 нот |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 11(9)^{9} \\ & 91-96 \end{aligned}$ | | | 23131 HARMER | 26131 HOT | 25134 VERY HOT
 2523 द VERY HOT
 25334 COntinued very hot
 25431 HOT
 25531 NOT AS HOT
 2563 १ нот |
| $\begin{aligned} & 17(8) \\ & 81-90 \end{aligned}$ | ! | 32531 COOLER | 33131 HARMER | 34131 WARMER | 3513 द MUCH HARMER
 35231 WARMER
 35331 CONTINUED
 35634 NOT AS HARM
 3553 1 wоt As hоt
 35631 HARM |
| $\begin{aligned} & L T(7) \\ & 57-80 \end{aligned}$ | , | 42531 COOLER | | 44131 WARMER | 45131 much marmer |
| $\begin{aligned} & 17(6) \\ & 42-56 \end{aligned}$ | 5113 i NOT AS COLD
 51231 COLD
 51331 CONTINUED COLD
 51431 COLDER
 51531 COLDER
 51631 COLD | 52531 COLDER | 53531 COOLER | . | 55134 MUCK WARMER |
| $\begin{aligned} & 17(5) \\ & 27-41 \end{aligned}$ | 61131 NOT AS COLD
 61231 COLO
 61331 CONIINUED COLD
 61431 COLDER
 61534 MUCH COLDER
 61631 COLD | 62531 COLDER | - | | |
| $\begin{aligned} & \operatorname{LT}(6) \\ & \leq 26 \end{aligned}$ | 71131 NOT AS COLD
 71234 VERY COLD
 71334 CONTINUED VERY COLD
 71434 BITTER COLD
 7153 \& BITTER COLD
 71636 BITTER COLD | 72431 COLDER
 72534 MUCH COLDER | 73131 NOT AS COLD 73534 MUCH COLDER | | - |
| | <-11 | 1) -11 то -8 | (2) $\quad-7$ T0 7 | (1) 8 то 11 | Li(2) >11 |

DEPARTURE FROM NORMAL
 departure from normal, and change from the day before. Ranges corresponding to default values of

[^0]: igure 4. Maximum temperature descriptors for detail level 2 as a function of forecast temperatures, departure from normal, and change from the day before. Ranges corresponding to default values of the LT() parameters are indicated for each box in the table. All temperatures are in degrees F.
 等

